7.2 Equivalent Vector Channel

7.21. Recall that we are considering the digital modulator/demodulator part shown in Figure 37.

Figure 37: Digital modulator/demodulator and the waveform channel
7.22. The input of the modulator is the (random) message (index) $W \in$ $\{1,2, \ldots M\}$.

- Prior probabilities: $p_{j}=P[W=j]$.
- Each message is mapped to a waveform to be transmitted over the waveform channel as the transmitted waveform $S(t)$.
- There are M possible messages. So, there are M waveforms:

$$
s_{1}(t), s_{2}(t), \ldots, s_{M}(t)
$$

The (symbol) energy of the j-th waveform is $E_{j}=\left\langle s_{j}(t), s_{j}(t)\right\rangle$.
The average energy per symbol is $E_{s}=\sum_{j=1}^{M} p_{j} E_{j}$.

- Transmission of the message $W=j$ is done by inputting the corresponding waveform $s_{j}(t)$ into the channel.
Therefore, the probability that the waveform $s_{j}(t)$ is selected to be transmitted is the same as the probability that the $j^{\text {th }}$ message occurs:

$$
p_{j}=P[W=j]=P\left[S(t)=s_{j}(t)\right]
$$

7.23. The noise $N(t)$ in the channel is assumed to be additive. So, the (2) receiver observes $R(t)=S(t)+N(t)$. The noise is also assumed to be independent from the transmitted waveform $S(t)$.

7.24. Conversion of Waveform Channels to Vector Channels:

(a) Given M waveforms $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$, first find (possibly by GSOP) the K orthonormal basis functions $\phi_{1}(t), \phi_{2}(t), \ldots, \phi_{K}(t)$ for the space spanned by $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$.
(b) The basis gives the vector representations $\mathbf{s}^{(1)}, \mathbf{s}^{(2)}, \ldots, \mathbf{s}^{(M)}$ for the waveforms $s_{1}(t), s_{2}(t), \ldots, s_{M}(t)$, respectively. Note that $s_{i}^{(j)}$, the $i^{\text {th }}$ component of the vector $\mathbf{s}^{(j)}$, comes from the inner-product:

$$
s_{i}^{(j)}=\left\langle s_{j}(t), \phi_{i}(t)\right\rangle .
$$

(c) The vector representations of the received waveform and the noise can then be calculated in a similar manner based on the derived basis.
(d) In summary, we convert the waveforms $S(t), R(t)$, and $N(t)$ to their corresponding vectors \mathbf{S}, \mathbf{R}, and \mathbf{N} by performing inner-product with the orthonormal axes: the i-th component of the vector is the innerproduct between the waveform and $\phi_{i}(t)$. In particular,

$$
S_{i}=\left\langle S(t), \phi_{i}(t)\right\rangle, \quad R_{i}=\left\langle R(t), \phi_{i}(t)\right\rangle, \quad N_{i}=\left\langle N(t), \phi_{i}(t)\right\rangle
$$

Figure 38: Conversion of Waveform Channels to Vector Channels
Remarks:

- We use the letter K instead of the letter N to represent the number of orthonormal basis functions to avoid the confusion with the random noise which is also denoted by the letter N.
- This conversion is the same as what we did when we convert waveforms to vectors via the GSOP. (See Eq. (38) and Figure 27a.) When $s_{j}(t)$ is transmitted, the corresponding "transmitted" vector will be s ${ }^{(j)}$.

Example 7.25. Figure 39 illustrates how the message vectors in quaternary QAM are corrupted by additive noise.

Figure 39: Quaternary QAM: constellation and samples of the received vectors (which are corrupted by additive noise)
7.26. Some facts that followed from the conversion:
(a) For $R(t)=S(t)+N(t)$, we have $\mathbf{R}=\mathbf{S}+\mathbf{N}$.
(b) From the perspective of designing optimal demodulator, the waveform channel and the vector channel are "equivalent".
(c) $E_{j}=\left\langle s_{j}(t), s_{j}(t)\right\rangle=\left\langle\mathbf{s}^{(j)}, \mathbf{s}^{(j)}\right\rangle$.
(d) Prior probabilities:

$$
p_{j}=P[W=j]=P\left[S(t)=s_{j}(t)\right]=P\left[\mathbf{S}=\mathbf{s}^{(j)}\right]
$$

(e) $\mathbf{S} \Perp \mathbf{N}$
(f) When $N(t)$ is a white noise process with $S_{N}(f) \equiv \frac{N_{0}}{2}$ across all frequencies under consideration, we have
(i) $\mathbb{E}\left[N_{j}\right]=0$, and $N(t) \rightarrow \vec{N}=\left(\begin{array}{c}N_{1} \\ N_{2} \\ \vdots \\ N_{k}\end{array}\right)$
(ii) $\mathbb{E}\left[N_{i} N_{j}\right]= \begin{cases}N_{0} / 2, & i=j, \\ 0, & i \neq j .\end{cases}$

In other words, the noise components arg uncorrelated and
Va, $X=\mathbb{E}\left[X^{2}\right]-(\mathbb{E} X)^{2}$

$$
\begin{aligned}
& \mathbb{E}\left[N_{i}^{2}\right]=\operatorname{Var} N_{i}=\frac{N_{0}}{2} . \\
& \sigma_{N_{i}}=\sqrt{\operatorname{Var} N_{i}}=\sqrt{\frac{N_{0}}{2}}
\end{aligned}
$$

