
7.2 Equivalent Vector Channel

7.21. Recall that we are considering the digital modulator/demodulator
part shown in Figure 37.
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Figure 37: Digital modulator/demodulator and the waveform channel

7.22. The input of the modulator is the (random) message (index) W ∈
{1, 2, . . .M}.

� Prior probabilities: pj = P [W = j].

� Each message is mapped to a waveform to be transmitted over the
waveform channel as the transmitted waveform S(t).

◦ There are M possible messages. So, there are M waveforms:

s1(t), s2(t), . . . , sM(t).

The (symbol) energy of the j-th waveform is Ej = 〈sj (t) , sj (t)〉.

The average energy per symbol is Es =
M∑
j=1

pjEj.

◦ Transmission of the message W = j is done by inputting the cor-
responding waveform sj(t) into the channel.
Therefore, the probability that the waveform sj(t) is selected to
be transmitted is the same as the probability that the jth message
occurs:

pj = P [W = j] = P [S (t) = sj (t)]

7.23. The noise N(t) in the channel is assumed to be additive. So, the
receiver observes R(t) = S(t) + N(t). The noise is also assumed to be
independent from the transmitted waveform S(t).
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7.24. Conversion of Waveform Channels to Vector Channels:

(a) GivenM waveforms s1(t), s2(t), . . . , sM(t), first find (possibly by GSOP)
the K orthonormal basis functions φ1 (t) , φ2 (t) , . . . , φK(t) for the space
spanned by s1(t), s2(t), . . . , sM(t).

(b) The basis gives the vector representations s(1), s(2), . . . , s(M) for the

waveforms s1(t), s2(t), . . . , sM(t), respectively. Note that s
(j)
i , the ith

component of the vector s(j), comes from the inner-product:

s
(j)
i = 〈sj (t) , φi (t)〉 .

(c) The vector representations of the received waveform and the noise can
then be calculated in a similar manner based on the derived basis.

(d) In summary, we convert the waveforms S(t), R(t), and N(t) to their
corresponding vectors S, R, and N by performing inner-product with
the orthonormal axes: the i-th component of the vector is the inner-
product between the waveform and φi(t). In particular,

Si = 〈S (t) , φi (t)〉 , Ri = 〈R (t) , φi (t)〉 , Ni = 〈N (t) , φi (t)〉 .

𝑠 𝑡 , 𝑠 𝑡 , … , 𝑠 𝑡

1

Vector Channel:

Waveform Channel: Find orthonormal basis 
(possibly by GSOP): 
𝜙 𝑡 , 𝜙 𝑡 , … , 𝜙 𝑡
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⋮
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=

Figure 38: Conversion of Waveform Channels to Vector Channels

Remarks:

� We use the letter K instead of the letter N to represent the number
of orthonormal basis functions to avoid the confusion with the random
noise which is also denoted by the letter N .
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� This conversion is the same as what we did when we convert waveforms
to vectors via the GSOP. (See Eq. (38) and Figure 27a.) When sj(t)
is transmitted, the corresponding “transmitted” vector will be s(j).

Example 7.25. Figure 39 illustrates how the message vectors in quaternary
QAM are corrupted by additive noise.
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Figure 39: Quaternary QAM: con-
stellation and samples of the re-
ceived vectors (which are cor-
rupted by additive noise)

7.26. Some facts that followed from the conversion:

(a) For R(t) = S(t) +N(t), we have R = S + N.

(b) From the perspective of designing optimal demodulator, the waveform
channel and the vector channel are “equivalent”.

(c) Ej = 〈sj (t) , sj (t)〉 =
〈
s(j), s(j)

〉
.

(d) Prior probabilities:

pj = P [W = j] = P [S (t) = sj (t)] = P
[
S = s(j)

]
(e) S |= N

(f) When N(t) is a white noise process with SN(f) ≡ N0

2 (across all fre-
quencies under consideration, we have

(i) E [Nj] = 0, and

(ii) E [NiNj] =

{
N0/2, i = j,
0, i 6= j.

In other words, the noise components are uncorrelated and

E
[
N 2
i

]
= VarNi =

N0

2
.
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